
Lock-free Skip List
Team Member
Chen He
Yida Wu

Schedule

Week Task Progress Assigned

Nov 4 -
Nov 8

Investigate on the research paper and discuss the idea. Done Together

Nov 9 -
Nov 22

Implement a coarse-grained version of skip list. Done Chen He

Implement  the contain function in the fine-grained skip
list.

Done Yida Wu

Implement  the insert function in the fine-grained skip
list.

Done Yida Wu

Implement  the delete function in the fine-grained skip
list.

In Progress Yida Wu

Implement insert function in lock-free skip list Done Chen He

Implement delete function in lock-free skip list In Progress Chen He

Implement contain function in lock-free skip list Done Chen He

Finish milestone report Done Together

Nov 23 -
Nov 26

Finish remaining part of delete function in lock-free skip
list

Chen He

Finish the remaining part of the delete function in the
fine-grained skip list.

Yida Wu

Nov 27 -
Nov 28

Verify the correctness for the implementation and fix
problems

Together

Nov 29 -
Dec 3

Design test cases to evaluate performance Together



Conduct performance evaluation Together

Improve performance if we still have time Together

Dec 4 -
Dec 9

Finish final project report Together

Finish poster Together

Summary and Completed Work
We have finished the coarse-grained skip list implementation with a global lock.

For the fine-grained skip list, we have completed the contains(search) and insert operations.
The delete operation still has some small problems in concurrent context. The reason why our
fine grained skip list is not fully finished yet based on what we planned in our proposal will be
detailed explained in the concern section at the end of the report.

For the lock-free skip list, we have completed the contains(search) and insert operations. The
delete operation is still in progress because there’s some new challenges that were not
foreseen. These new challenges are mentioned in the later parts. It is expected to be fixed
within several days.

Goals and Deliverables
We will stick to our original plan and we will finish a functioning coarse-grained skip list,
fine-grained skip list, lock-free skip list and an analysis report regarding their performance. We
originally plan to try to improve the performance of the lock-free version and try to make it
perform better than the locked version. However, we found that some of the features in the
lock-free research paper are not available in C++ standard library. Thus, it’s hard to tell whether
a lock-free or locked version will have better performance. We will try our best on each version
to improve its individual performance and we will discuss our strategy in our final report.

Plan to Achieve

● A functioning coarse-grained skip list.

● A functioning fine-grained skip list.

● A functioning lock-free skip list.

● An analysis report regarding the performance and implementation.



Hope to Achieve

● Optimized fine-grained skip list using strategies from different research papers.

● Optimized lock-free skip list using strategies from different research papers.

Something further

● We seek to think creatively. So, if time allows, we would like to go beyond the research paper
that already exists. We would like to optimize our skip list with batch operations if possible.

Demo plan to show at poster session:

● We plan to show a comparison of performance across coarse-grained, fine-grained, and lock
free skip list implementation for different workloads.

● We plan to show an analysis of strengths and weaknesses of lock free skip list in different
operations (e.g. search, insert, delete). And list the best circumstance that lock free skip list fits
in.

Preliminary Results
At this time, we have no preliminary results to demonstrate regarding the performance of our
implementations. We have developed tests that focus on functionality on single/multiple threads.
Once we finish our implementation and prove its correctness under multi-thread conditions, we
will develop performance test cases.

Challenges and Concerns
The reason why our delete function in the fine grained skip list is not finished yet is quite related
to our fine grained skip list implementation details: our fine grained skip list adds locks on every
level of each node in the list plus a big local lock on each node. Assume we have a six level skip
list, the number of locks a single node could hold is 7, which means on delete operation on a
single node, we need to simultaneously manage possible 14 locks at the same time. This
greatly adds complexity and difficulty to our lock management, and now we still have some
small problems with locks in delete operations.

The research paper we follow uses some atomic features (e.g. markable reference) that are not
available in the C++ atomic standard library on the ghc machine. We already found possible
alternative solutions to solve this problem and are still working on the designing and coding.
This may potentially lower the performance. We also have to modify some of the program



structures and design our own procedures due to the lack of features. This brings additional
challenges in the designing and implementation.

Another problem is that many research papers in this area do not mention memory deallocation.
This is not a problem when the program has a garbage collector. However, we are implementing
the skip list in C++ so we have to figure out our own ways. We initially try to free the node when
it is physically deleted from the skip list. However, we found that some threads may still have
access to the deleted node, which will lead to segment fault. We can only free the node’s
memory when there’s no place that can access it. We are planning to use a share pointer to
solve this problem but worrying about whether it will further degrade the performance.

One of the strengths of skip list outweighs other data structures like red black tree is batch
operations, since skip list does not need to acquire global information like root in red black tree
in its design. Thus, if time allows, we would dive deeper into batch operations of the skip list
which add a bunch of nodes single time instead of performing continuous insert operations.


